HapEdit: an accuracy assessment viewer for haplotype assembly using massively parallel DNA-sequencing technologies

نویسندگان

  • Jong Hyun Kim
  • Woo-Cheol Kim
  • Lei M. Li
  • Sanghyun Park
چکیده

The massively parallel sequencing technologies have recently flourished and dramatically cut the cost to sequence personal human genomes. Haplotype assembly from personal genomes sequenced using the massively parallel sequencing technologies is becoming a cost-effective and promising tool for human disease study. Computational assembly of haplotypes has been proved to be very accurate, but obviously contains errors. Here we present a tool, HapEdit, to assess the accuracy of assembled haplotypes and edit them manually. Using this tool, a user can break erroneous haplotype segments into smaller segments, or concatenate haplotype segments if the concatenated haplotype segments are sufficiently supported. A user can also edit bases with low-quality scores. HapEdit displays haplotype assemblies so that a user can easily navigate and pinpoint a region of interest. As inputs, HapEdit currently takes reads from the Polonator, Illumina, SOLiD, 454 and Sanger sequencing technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HapTree: A Novel Bayesian Framework for Single Individual Polyplotyping Using NGS Data

As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy. Yet com...

متن کامل

Capturing native long-range contiguity by in situ library construction and optical sequencing.

The relatively short read lengths associated with the most cost-effective DNA sequencing technologies have limited their use in de novo genome assembly, structural variation detection, and haplotype-resolved genome sequencing. Consequently, there is a strong need for methods that capture various scales of contiguity information at a throughput commensurate with the current scale of massively pa...

متن کامل

HapTree-X: An Integrative Bayesian Framework for Haplotype Reconstruction from Transcriptome and Genome Sequencing Data

Identifying phase information is biomedically important due to the association of complex haplotype effects, such as compound heterozygosity, with disease. As recent next-generation sequencing (NGS) technologies provide more read sequences, the use of diverse sequencing datasets for haplotype phasing is now possible, allowing haplotype reconstruction of a single sequenced individual using NGS d...

متن کامل

EagleView: a genome assembly viewer for next-generation sequencing technologies.

The emergence of high-throughput next-generation sequencing technologies (e.g., 454 Life Sciences [Roche], Illumina sequencing [formerly Solexa sequencing]) has dramatically sped up whole-genome de novo sequencing and resequencing. While the low cost of these sequencing technologies provides an unparalleled opportunity for genome-wide polymorphism discovery, the analysis of the new data types a...

متن کامل

Local De Novo Assembly of RAD Paired-End Contigs Using Short Sequencing Reads

Despite the power of massively parallel sequencing platforms, a drawback is the short length of the sequence reads produced. We demonstrate that short reads can be locally assembled into longer contigs using paired-end sequencing of restriction-site associated DNA (RAD-PE) fragments. We use this RAD-PE contig approach to identify single nucleotide polymorphisms (SNPs) and determine haplotype st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011